THE BASIC PRINCIPLE

The luminosity (L) can be calculated from the rate of all inelastic interactions (R_{in}) and the total inelastic cross section (σ_{in}) by using the simple relation:

The inelastic interaction rate is given by the average number of inelastic interactions per bunch crossing (μ) and the bunch crossing rate (f_{BX}):

where the bunch crossing rate is given by

The average number of interactions per bunch crossing (μ) is estimated from a rate of events measured by the detectors.

Two main types o	of event rates are cou	inted: N _{OR/BX} :	Events per BX with at least the two detectors.	one hit anywhere in
If μ << 1:		N _{AND/BX} :	Events per BX with at least the two detectors.	one hit in each of
$N_{OR/BX} \approx$ $N_{AND/BX} \approx$	ε _{sing} μ ε _{coin} μ	$L = \frac{f_{BX}}{\sigma_{inel}} \times \mu$	$l = \frac{f_{BX}}{\sigma_{inel}} \times \frac{N_{Events/BX}}{\epsilon} =$	f _{BX} × N _{Events/BX} σ _{vis}

where \mathcal{E}_{sing} and \mathcal{E}_{coin} are the efficiency & acceptance of the detector to record an inelastic event when an OR- or an AND-requirement is made.

$$L = \frac{f_{BX}}{\sigma_{inel}} \times \mu$$

$$-=\frac{R_{inel}}{\sigma_{inel}}$$

 $f_{BX} = \frac{\text{The number of filled bunch crossings}}{3564} \times 40 \text{ MHz}$

 $R_{inel} = \mu \times f_{BX}$