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1 Analytic calculation of coincidence notes

This is basic analytical calculation of coincidence probability R as a function of luminosity L.
Coincidence here has a meaning of detecting anything in side A and C modules. The basic quantity
which must be determined by simulation is the average number of tracks rTR detected in BCM per
proton-proton collision. Turning the focus to probability; for not detecting anything in side A in
N proton-proton collisions probability can be written as:

P(0, rTRNPA) = e−rTRNPA , (1)

where P(x, y) is Poisson distribution for x events at a average rate y and PA stands for probability
of detecting BCM track on side A (and analogue for C side). So

PA =
NA

NA + NC
and PA + PC = 1, (2)

where Ni denotes the number of detected tracks on the corresponding side. For a coincidence we
must have something on both sides so the appropriate expression is:

pA∧C =
(
1− e−PANrTR

) (
1− e−(1−PA)NrTR

)
. (3)

The above expression must be combined with the probability for N proton-proton interactions
at given luminosity. This is also assumed to be Poissonian. The final expression, in terms of
luminosity, is therefore written as

R(L) =
∞∑

N=0

P

(
N,

L

L0

) [(
1− e−PANrTR

) (
1− e−(1−PA)NrTR

)]
, (4)

where L0 denotes luminosity at which on average one proton-proton collision is expected. In the
region of low luminosities the above formula can be expanded and with dominating N = 1:

R (L) ' (
1− e−PArTR

) (
1− e−(1−PA)rTR

) L

L0
+ O(L2) (5)

which shows a linear regime at low luminosities.
Simulation on 8000 proton-proton collision was done and coincidences were counted for vari-

ous luminosities. This data, with rTR = 0.375 also obtained from simulation, is plotted against
prediction (4).
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Slika 1: Prediction (continuous line) and simulation results (dots) are compared. In the
error bars only statistical error of coincidence counting has been included and no rTR

uncertainty.

2 Effect of varying vertex position

Simulated results presented above were made for symmetrically positioned modules – the vertex was
in the centre (z = 0). The movement of vertex has an impact on rTR and on PA since any movement
means that the vertex is closer to A than to C side or vice versa. The following calculation is aiming
to predict these dependences to the lowest order. All is done for the movements in the z direction.

Moving the vertex has two effects: the flux changes and the effective area of BCM changes due
to slightly different relative positions of vertex and the module. I denote j as the flux in angle dΩ
and Ω as BCM solid angle. Then the change in the number of detected tracks N , in one module,
on dz movement of the module is expressed as:

dN

dz
=

dj

dz
Ω + j

dΩ
dz

. (6)

The following notation is used: z is the longitudinal coordinate of the module, transverse coordinate
is denoted h, the area of active volume (diamond) is S0 and the tilt angle of diamond relative to z
axis if φ. All are assumed to be positive. From this the effective area Seff of diamond, as seen by
the vertex, can be calculated1:

Seff = S0
zsinφ− h cosφ√

h2 + z2
. (7)

The derivative with respect to z is:

dSeff

dz
= S0

h

(h2 + z2)3/2
(z cosφ + h sinφ) (8)

1The following expression is valid for h/z < tan φ. To overstep this boundary the vertex displacement would have
to be huge and the presented calculation is not valid anyway.

2



and is positive as should be, since making z larger means more perpendicular tracks from the vertex.
We are interested in change of the solid angle, Ω = S(z)/r2 where r =

√
h2 + z2, so:

dΩ
dz

=
dSeff

dz

1
r2
− 2Seff

r3

dr

dz
. (9)

Since dr/dz = z/r we can write:

dΩ
dz

=
S0

(h2 + z2)5/2

(
3hz cosφ− (2z2 − h2) sinφ

)
, (10)

which has two terms. This is logical, since moving module in +z direction means: increasing dis-
tance form the vertex and rotating it in the track frame. The above expression describes geometrical
changes. To compute the second term in (6) the flux j is also needed. The available information is
charged particle density over η. I denote this Nη. From definition: the current is

j =
dN

dΩ
=

dN

dη

dη

dθ

dθ

dΩ
=

1
2π

Nη

(
1 +

h2

z2

)
. (11)

With standard definition of pseudorapidity η and θ being angle between z axes an vertex-module
direction, we have:

dθ

dz
= −sin2 θ

h
and

dη

dθ
= − 1

sin θ
.

The equation (11) can be put to the test. If we multiply it by BCM solid angle for all eight
modules 8Ω, we should obtain r

′
TR. The predicted value is r

′P
TR = 0.1958 and simulation gives

r
′
TR = 0.1919 ± 0.0027. Here must be stressed that r

′
TR represents only the track rate of primary

particles.
The next step are flux changes:

dj

dz
=

dNη

dz

1
2π sin2 θ

+ Nη
d

dz

(
1

2π sin2 θ

)
(12)

=
1

πh2

((
dNη

dη

) √
h2 + z2

2
+ Nηz

)
.

Both derivatives, geometrical and flux, are now known and we can insert it in (6). We get,

dN

dz
=

1
π

S0

h2 (h2 + z2)3/2

[
(z sinφ− h cosφ)

((
dNη

dη

) √
h2 + z2

2
+ Nηz

)
+ (13)

+
1
2
Nη

(
3hz cosφ− (2z2 − h2) sinφ

)]
=

1
4

dNC

dz
,

where NC is the number of detected tracks on C side. To evaluate above expresion, the Nη = 7.3

and
(

dNη

dη

)
= −1.1 were read from ATLAS TDR 14. From this dP

′
A

dz can be calculated:

dP
′
A

dz
=

1
N
′
A + N

′
C

dN
′
A

dz
=

1
r
′
TR

dN
′
A

dz
, (14)

where all quantities are defined only for primary tracks.
The final analytical estimation is therefore dP ′A

dz = 0.0324/m and dr′TR
dz = 0, since this is only

the lowest order.
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3 Simulation results

Simulation was done on 20k p-p collisions with vertex at z = 0 and 6k p-p collisions with z = 10 cm.
The estimation is:

dPA

dz
= (−0.209± 0.128)

1
m

, (15)

and
drTR

dz
= (0.11± 0.12)

1
m

. (16)

The track rate is still consistent with zero, but the change of PA is very different from analytical
prediction. Reason is that the prediction only includes particles that originate in vertex. These
represent only half of particles that are detected by BCM (r

′
TR = 0.1919, while rTR = 0.3983 for all

particles). The secondary particles therefore have much larger and negative contribution to dPA
dz .

This can be understood from figure 2. The origin of detected particles is plotted in z-r diagram.
The left picture is for vertex at z = 0 and right, on much smaller statistics, for z = 1m. This is
unreasonably large but it shows what happens: Pixel move out of vertex-module way and their
contribution decreases on A side, while on C side the increase of Pixel-particles can be seen. This
explains the negative sign of dPA

dz .
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